Selective inhibition of heme oxygenase, without inhibition of nitric oxide synthase or soluble guanylyl cyclase, by metalloporphyrins at low concentrations.

نویسندگان

  • S D Appleton
  • M L Chretien
  • B E McLaughlin
  • H J Vreman
  • D K Stevenson
  • J F Brien
  • K Nakatsu
  • D H Maurice
  • G S Marks
چکیده

Studies on the physiological role of heme oxygenase (HO) require an inhibitor that will selectively inhibit HO activity without inhibiting the activity of either nitric oxide synthase (NOS) or soluble guanylyl cyclase (sGC). The objective of this study was to test a series of metalloporphyrins that have previously been shown to inhibit HO activity, for their ability to inhibit HO without inhibiting NOS or sGC activities. Measurement of activity of HO in rat brain microsomes and NOS in rat brain cytosol was made for samples incubated with metalloporphyrins (0.15-50 microM), including zinc protoporphyrin IX, zinc deuteroporphyrin IX 2,4-bis-ethylene glycol (ZnBG), chromium mesoporphyrin IX (CrMP), tin protoporphyrin IX, and zinc N-methylprotoporphyrin IX. CrMP and ZnBG were found to be the most selective inhibitors of HO activity (i.e., caused the greatest inhibition of HO activity, 89 and 80%, respectively, without inhibition of NOS activity). Based on these results, sGC activity in rat lung cytosol incubated with CrMP or ZnBG (0.15-15 microM) was measured. ZnBG did not affect basal sGC activity but did potentiate S-nitroso-N-acetylpenicillamine (SNAP)-induced sGC activity. CrMP did not affect either basal or SNAP-induced activity. It was concluded that of the five metalloporphyrins studied, CrMP, at a concentration of 5 microM, was a selective inhibitor of HO activity and was the most useful metalloporphyrin for the conditions tested. Thus, CrMP would appear to be a valuable chemical probe in elucidating the physiological role of HO.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effectiveness of novel imidazole-dioxolane heme oxygenase inhibitors in renal proximal tubule epithelial cells.

To enhance our understanding of the physiological roles of heme oxygenase (HO) isozymes, HO-1 (inducible) and HO-2 (constitutive), we developed novel imidazole-based HO inhibitors. Unlike the metalloporphyrins, these imidazole-dioxolane compounds are selective for the in vitro inhibition of HO with minimal effects on other heme-dependent enzymes such as nitric oxide synthase and soluble guanyly...

متن کامل

Estrogen increases endothelial carbon monoxide, heme oxygenase 2, and carbon monoxide-derived cGMP by a receptor-mediated system.

Carbon monoxide, a gaseous activator of soluble guanylyl cyclase formed by a subtype of the enzyme heme oxygenase designated heme oxygenase-2 in vascular endothelium, has been found to dilate blood vessels independently from nitric oxide. Because of the parallels between nitric oxide and carbon monoxide, we speculated that estrogen might affect carbon monoxide production in vascular endothelium...

متن کامل

Neural roles for heme oxygenase: contrasts to nitric oxide synthase.

The heme oxygenase (HO) and nitric oxide (NO) synthase (NOS) systems display notable similarities as well as differences. HO and NOS are both oxidative enzymes using NADPH as an electron donor. The constitutive forms of the enzyme are differentially activated, with calcium entry stimulating NOS by binding to calmodulin, whereas calcium entry activates protein kinase C to phosphorylate and activ...

متن کامل

No-and Co-mediated Inhibition of Mitochondrial Respiration in Activated Macrophages

Nitric oxide (NO) is a gaseous signalling molecule that is synthesised by nitric oxide synthases (NOSs) and has a variety of physiological and pathophysiological roles. Some of its physiological functions are primarily mediated via the activation of soluble guanylate cyclase. However, NO is also able to potently inhibit mitochondrial respiration at complex IV of the electron transport chain (ET...

متن کامل

A novel role for carbon monoxide as a potent regulator of intracellular Ca and nitric oxide in rat pancreatic acinar cells

Moustafa A, Habara Y. A novel role for carbon monoxide as a potent regulator of intracellular Ca and nitric oxide in rat pancreatic acinar cells. Am J Physiol Cell Physiol 307: C1039–C1049, 2014. First published September 24, 2014; doi:10.1152/ajpcell.00252.2014.—Carbon monoxide (CO) is known as an essential gaseous messenger that regulates a wide array of physiological and pathological process...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 27 10  شماره 

صفحات  -

تاریخ انتشار 1999